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Abstract: A certain integral is there in the literature which some authors call
ultra gamma function, some others call it generalized gamma, some others call
it Krätzel integral, some others call it inverse Gaussian integral, some others call
it reaction-rate probability integral, some others call it Bessel integral, some oth-
ers call it the unconditional density in a Bayesian structure and some others call
it the Mellin convolution of a product. Thus, this integral is very important to
various people in different disciplines. In this article, this integral is evaluated in
computable series form. It is shown that the names, generalized gamma and ultra
gamma are not appropriate for this integral.
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1. Introduction
Consider the integral

B =

∫ ∞
0

xγ−1e−ax
δ−bx−ρdx (1.1)

for a > 0, b > 0, γ > 0, δ > 0, ρ > 0. If the integrand in B is to be made a
statistical density then we may multiply the integral by the normalizing constant.
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In that case the function is defined for x ≥ 0 and zero otherwise. The integrand
in B for δ = 1, ρ = 1 and multiplied by the normalizing constant is the inverse
Gaussian density for appropriate values of a, b, γ. For δ = 1, ρ = 1

2
it is the basic

reaction-rate probability integral in nuclear reaction-rate theory. For general values
of δ and ρ, Mathai and Haubold (1988) call the integral the generalized reaction-
rate probability integral. For the general parameters case, there is no physical
interpretation yet but the theory is worked out in Mathai and Haubold (1988) and
in the later papers. For δ = 1, ρ = 1 the integral is the basic Krätzel integral in
applied analysis, which is also connected to Krätzel transform, see Krätzel (1979),
Mathai (2012). Hence one may call (1.1) as the generalized Krätzel integral. If
b = 0 then it is a generalized gamma integral but when b = 0 the special nature of
(1.1) is lost. Hence it is not appropriate to call (1.1) as generalized gamma or ultra
gamma function because the connection to gamma function is only when b = 0
and this is not an admissible value in (1.1). All sorts of studies are done by people
working in special functions, treating (1.1) as generalization of gamma function.
The Mellin convolution of a product has the structure

g(u) =

∫
v

1

v
f1(

u

v
)f2(v)dv (1.2)

so that the Mellin transform of g, with the Mellin parameter s, denoted by Mg(s),
is given by

Mg(s) = Mf1(s)Mf2(s). (1.3)

This is the Mellin convolution of a product property. Now, let

f1(x1) = e−x
ρ
1 , 0 ≤ x1 <∞, ρ > 0, u = b

1
ρ (1.4)

f2(x2) = xγ2e−ax
δ
2 , 0 ≤ x2 <∞, δ > 0, γ > 0. (1.5)

Then ∫ ∞
0

1

v
f1(

u

v
)f2(v)dv =

∫ ∞
0

xγ−1e−ax
δ−bx−ρdv (1.6)

where b = u
1
ρ . Thus, (1.1) is a Mellin convolution of a product or it is also the

statistical density of a product of the form u = x1x2 where x1 and x2 enjoy product
probability property (PPP) or are statistically independently distributed positive
real scalar random variables. In this case, multiply (1.1) with the normalizing con-
stant. A structure of the type in (1.1) is also of interest for statisticians working
on different topics. Connections to inverse Gaussian density and density of a prod-
uct are already pointed out. It is also of interest for people working in Bayesian
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analysis. Consider a conditional density of a real scalar positive random variable y,
at given value of a parameter or another variable x, which is a generalized gamma
density of the following form:

f(y|x) = c1e
− y
xρ , 0 ≤ y <∞, x > 0 (1.7)

and zero elsewhere, where c1 is the normalizing constant. Consider the marginal
density of x, a generalized gamma density of the form:

g(x) = c2x
γ−1e−ax

δ

, 0 < x <∞, a > 0, γ > 0 (1.8)

and zero elsewhere, where c2 is the normalizing constant. Then the unconditional
density of y, denoted by B(y), is available by integrating over the density g(x).
That is,

B(y) = c1c2

∫ ∞
0

xγ−1e−ax
δ−yx−ρdx (1.9)

which is nothing but (1.1), multiplied by the constant c1c2. Hence, from the point of
view of Bayesian analysis also the integral in (1.1) is very important. The integral
in (1.1) can be interpreted as a continuous mixture in statistical distribution theory.
Since it is a very interesting integral in many topics, we will evaluate it explicitly
and represent it in computable forms.

2. Evaluation of the Bessel Integral
In B of (1.1) let us take the Mellin transform with respect to b, with Mellin

parameter s, denoted by Mb(s), or take it as the Mellin transform of the function
B(y) of (1.9) with b = y. Then

Mb(s) =

∫ ∞
0

bs−1[

∫ ∞
0

xγ−1e−ax
δ−bx−ρdx]db. (2.1)

Interchange of integrals is valid here and taking the integral over b and then integral
over x we have the following:∫ ∞

b=0

bs−1e−bx
−ρ

db = Γ(s)(x−ρ)−s = xρsΓ(s),<(s) > 0. (2.2)

Now, the integral over x gives the following:∫ ∞
0

xγ+ρs−1e−ax
δ

dx =
1

δ
Γ(
γ + ρs

δ
)a−(

γ+ρs
δ

). (2.3)
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Therefore, from (2.2) and (2.3), we have

Mb(s) =
1

δa
γ
δ

Γ(s)Γ(
γ

δ
+
ρ

δ
s)a−

ρ
δ
s. (2.4)

Hence by taking the inverse Mellin transform of (2.4) we get B as the inverse Mellin
transform. That is,

B =
1

δa
γ
δ

1

2πi

∫ c+i∞

c−i∞
Γ(s)Γ(

γ

δ
+
ρ

δ
s)(ba

ρ
δ )−sds, i =

√
−1 (2.5)

where the c in the contour is any positive number. The integral in (2.5) can be
written as a H-function, for the theory and applications of H-function, see for
example Mathai et al. (2010). That is

B =
1

δz
γ
δ

H2,0
0,2 [ba

ρ
δ |(0,1),( γ

δ
, ρ
δ
)]. (2.6)

When ρ = δ the coefficient of s in the inverse Mellin transform in (2.5) is 1 and
hence one can write it as a G-function. For the theory and applications of G-
function, see for example, Mathai (1993). That is, for ρ = δ,

B = (δa
γ
δ )−1G2,0

0,2[ab|0, γδ ]. (2.7)

Series Representations

The poles of Γ(s) are at s = 0,−1, ... and the poles of Γ(γ
δ

+ ρ
δ
s) are γ

δ
+

ρ
δ
s = −ν, ν = 0, 1, 2, ... or s = −γ

ρ
− δ

ρ
ν, ν = 0, 1, 2, .... Hence if γ

ρ
+ δ

ρ
ν, ν =

0, 1, 2, ... is not a positive integer then the poles of the integrand in the Mellin-
Barnes representation in (2.5) are simple and then evaluating the sums of residues
at the poles of Γ(s) and Γ(γ

δ
+ ρ

δ
s) we have the explicit series form. Sum of the

residues at the poles of Γ(s), s = −ν, ν = 0, 1, 2, ... is

(δa
γ
δ )−1

∞∑
ν=0

(−1)ν

ν!
Γ(
γ

δ
− ρ

δ
ν)(ba

ρ
δ )ν . (i)

For computing the sum of residues at the poles of Γ(γ
δ

+ ρ
δ
s) it is convenient to

make a transformation γ
δ

+ ρ
δ
s = s1 ⇒ s = −γ

ρ
+ δ

ρ
s1, ds = δ

ρ
ds1,

(ba
ρ
δ )−s = (ba

ρ
δ )

γ
ρ
− δ
ρ
s1 = b

γ
ρ a

γ
δ (ba)−s1 .
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and the sum of the residues is the following:

b
γ
ρ

ρ

∞∑
ν=0

(−1)ν

ν!
Γ(−γ

ρ
− δ

ρ
ν)(ab)ν . (ii)

Therefore for the simple poles case, B is available as the sum of (i) and (ii). That
is,

B = (δa
γ
δ )−1

∞∑
ν=0

(−1)ν

ν!
Γ(
γ

δ
− ρ

δ
ν)(ba

ρ
δ )ν

+
b
γ
ρ

ρ

∞∑
ν=0

(−1)ν

ν!
Γ(−γ

ρ
− δ

ρ
ν)(ab)ν , (2.8)

for γ
ρ

+ δ
ρ
ν is not a positive integer for ν = 0, 1, ..., γ

δ
− ρ

δ
ν 6= 0,−1,−2, ... for

ν = 0, 1, .... For ρ = δ one can simplify in terms of 0F1 series.

Special case (1): ρ = δ and γ
δ

is not a positive integer
Then

Γ(
γ

δ
) = (

γ

δ
− 1)(

γ

δ
− 2)...(

γ

δ
− ν)Γ(

γ

δ
− ν)

Γ(
γ

δ
− ν) =

Γ(γ
δ
)

(−1)ν(−γ
δ

+ 1)ν

where, for example, (a)n = a(a+1)...(a+n−1), a 6= 0, (a)0 = 1 is the Pochhammer
symbol. Also

Γ(−γ
ρ
− ν) =

Γ(−γ
ρ
)

(−1)ν(γ
ρ

+ 1)ν
.

Then for ρ = δ and γ
δ

not a positive integer, we have from (2.8)

B =
Γ(γ

δ
)

ρa
γ
ρ

0F1( ;−γ
ρ

+ 1; ab)

+
Γ(−γ

δ
)

ρ
b
γ
ρ
0F1( ;

γ

ρ
+ 1; ab). (2.9)

Thus, it is the sum of two Bessel series. Hence Bessel integral is an appropriate
name to be used for (1.1).

Special case (2): ρ = δ, γ
δ

= m,m = 1, 2, ...
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In this case the poles at s = 0,−1,−2, ...,−(m− 1) are simple and the poles at
s = −m,−m− 1, ... are of order two each. In this case

B =
1

δa
γ
δ

1

2πi

∫ c+i∞

c−i∞
Γ(s)Γ(m+ s)(ab)−sds. (2.10)

Sum of the residues at the poles s = 0,−1, ..,−(m− 1) is given by

1

δa
γ
δ

∞∑
ν=0

(−1)ν

ν!
Γ(m− ν)(ab)ν . (iii)

For x = −m− ν, ν = 0, 1, ... the poles are of order two each. Let

φ(s) = Γ(s)Γ(m+ s)(ab)−s.

Then the residue at the poles of order two, denoted by Rν , is given by the following:

Rν = lim
s→−ν

d

ds
{(s+ ν)2Γ(s)Γ(m+ s)(ab)−s}

= lim
s→−ν

d

ds
{(s+ ν)2

(s+ ν − 1)2...(s+m)2(s+m− 1)...s

(s+ ν − 1)2...(s+m)2(s+m− 1)...s
Γ(s)Γ(m+ s)(ab)−s}

= lim
s→−ν

d

ds
{ Γ2(s+ ν + 1)

(s+ ν − 1)2...(s+m)2(s+m− 1)...s
(ab)−s}

Note that (ab)−s = e−s ln(ab) and

d

ds
φ(s) = φ(s)

d

ds
lnφ(s).

Also

lim
s→−ν

φ(s) = lim
s→−ν

Γ2(s+ ν + 1)

(s+ ν − 1)2...(s+m)2(s+m− 1)...s
(ab)−s

=
(−1)m

ν!(ν −m)!
(ab)ν , ν = m,m+ 1, ...

lim
s→−ν

lnφ(s) = lim
s→−ν

d

ds
lnφ(s) = lim

s→−ν
[2ψ(s+ ν + 1)− 2

s+ ν − 1
− ...− 2

s+m
]

− 1

s+m− 1
− ...− 1

s
− ln(ab)

= 2ψ(1) + 2[1 +
1

2
+ ...+

1

ν −m
] + (

1

ν −m+ 1
+ ...+

1

ν
)− ln(ab)

= ψ(ν + 1) + ψ(ν −m+ 1)− ln(ab)



Computable Representation of Ultra Gamma Integral 7

where ψ(z) = d
dz

ln Γ(z) is the psi function. The above simplification is done by
using the properties of the psi function. Hence

Rν = [ψ(ν + 1) + ψ(ν −m+ 1)− ln(ab)]
(−1)m

ν!(ν −m)!
(ab)ν , ν = m,m+ 1, ... (2.11)

Therefore

B =
1

δa
γ
δ

{
m−1∑
ν=0

(−1)ν

ν!
Γ(m− ν)(ab)ν

+
∞∑
ν=m

[ψ(ν + 1) + ψ(ν −m+ 1)− ln(ab)][
(−1)m

ν!(ν −m)!
(ab)ν ]}. (2.12)

By using the same procedure one can write the logarithmic version corresponding
to (2.5) when the poles of Γ(s)Γ(γ

δ
+ ρ

δ
s) differ by integers. Since the expressions

become too lengthy they are not listed here.
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